Меню
Бесплатно
Главная  /  Лекции   /  Неявная функция двух переменных и ее дифференцирование. Производная функции, заданной неявно. Производная по направлению

Неявная функция двух переменных и ее дифференцирование. Производная функции, заданной неявно. Производная по направлению

Будем учиться находить производные функций, заданных неявно, то есть заданных некоторыми уравнениями, связывающими между собой переменные x и y . Примеры функций, заданных неявно:

,

,

Производные функций, заданных неявно, или производные неявных функций, находятся довольно просто. Сейчас же разберём соответствующее правило и пример, а затем выясним, для чего вообще это нужно.

Для того, чтобы найти производную функции, заданной неявно, нужно продифференцировать обе части уравнения по иксу. Те слагаемые, в которых присутствует только икс, обратятся в обычную производную функции от икса. А слагаемые с игреком нужно дифференцировать, пользуясь правилом дифференцирования сложной функции, так как игрек - это функция от икса. Если совсем просто, то в полученной производной слагаемого с иксом должно получиться: производная функции от игрека, умноженная на производную от игрека. Например, производная слагаемого запишется как , производная слагаемого запишется как . Далее из всего этого нужно выразить этот "игрек штрих" и будет получена искомая производная функции, заданной неявно. Разберём это на примере.

Пример 1.

Решение. Дифференцируем обе части уравнения по иксу, считая, что игрек - функция от икса:

Отсюда получаем производную, которая требуется в задании:

Теперь кое-что о неоднозначном свойстве функций, заданных неявно, и почему нужны особенные правила их дифференцирования. В части случаев можно убедиться, что подстановка в заданное уравнение (см. примеры выше) вместо игрека его выражения через икс приводит к тому, что это уравнение обращается в тождество. Так. приведённое выше уравнение неявно определяет следующие функции:

После подстановки выражения игрека в квадрате через икс в первоначальное уравнение получаем тождество:

.

Выражения, которые мы подставляли, получились путём решения уравнения относительно игрека.

Если бы мы стали дифференцировать соответствующую явную функцию

то получили бы ответ как в примере 1 - от функции, заданной неявно:

Но не всякую функцию, заданную неявно, можно представить в виде y = f (x ) . Так, например, заданные неявно функции

не выражаются через элементарные функции, то есть эти уравнения нельзя разрешить относительно игрека. Поэтому и существует правило дифференцирования функции, заданной неявно, которое мы уже изучили и далее будем последовательно применять в других примерах.

Пример 2. Найти производную функции, заданной неявно:

.

Выражаем игрек штрих и - на выходе - производная функции, заданной неявно:

Пример 3. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Пример 4. Найти производную функции, заданной неявно:

.

Решение. Дифференцируем обе части уравнения по иксу:

.

Выражаем и получаем производную:

.

Пример 5. Найти производную функции, заданной неявно:

Решение. Переносим слагаемые в правой части уравнение в левую часть и справа оставляем ноль. Дифференцируем обе части уравнения по иксу.

Производные высших порядков находятся последовательным дифференцированием формулы (1).

Пример. Найти и , если (x ²+y ²)³-3(x ²+y ²)+1=0.

Решение. Обозначая левую часть данного уравнения через f (х,y) найдем частные производные

f"x(x,y)=3(x²+y²)²∙2x-3∙2x=6x[(x²+y²)-1],

f"y(x,y)=3(x²+y²)²∙2y-3∙2y=6y[(x²+y²)-1].

Отсюда, применяя формулу (1), получим:

.

Чтобы найти вторую производную, продифференцируем по х найденную первую производную, учитывай при этом, что у есть функция х:

.

2°. Случай нескольких независимых переменных . Аналогично, если уравнение F(х, у, z)=0 , где F(х, у, z ) - дифференцируемая функция переменных х, у и z , определяет z как функцию независимых переменных х и у и Fz(x, у, z)≠ 0, то частные производные этой неявно заданной функции, вообще говоря, могут быть найдены по формулам

.

Другой способ нахождения производных функции z следующий: дифференцируя уравнение F(х, у, z) = 0 , получим:

.

Отсюда можно определить dz, а следовательно, и .

Пример. Найти и , если x ² - 2 y ²+3 z ² - yz + y =0.

1-й способ. Обозначая левую часть данного уравнения через F(х, у, z) , найдем частные производные F"x(x,y,z)=2x, F"y(x,y,z)=-4y-z+1, F"z(x,y,z)=6z-y .

Применив формулы (2), получим:

2-й способ. Дифференцируя данное уравнение, получим:

dx -4 y dy +6 z dz - y dz - z dy + dy =0

Отсюда определяем dz , т. е. полный дифференциал неявной функции:

.

Сравнивая с формулой , видим, что

.

3°. Система неявных функций . Если система двух уравнений

определяет u и v как функции переменных х и у и якобиан

,

то дифференциалы этих функций (а следовательно, и их частные производные) могут быть найдены из системы уравнений

Пример: Уравнения u+v=x+y, xu+yv=1 определяют u и v как функции х и у ; найти .

Решение. 1-й способ. Дифференцируя оба уравнения по х, получим:

.

Аналогичным образом найдем:

.

2-й способ. Дифференцированием находим два уравнения, связывающие дифференциалы всех четырех переменных: du + dv = dx + dy , x du + u dx + y dv + v dy =0.

Решив эту систему относительно дифференциалов du и dv , получим:

4°. Параметрическое задание функции . Если функция г переменных х и у задана параметрически уравнениями x=x(u,v), y=y(u,v), z=z(u,v) и

,

то дифференциал этой функции может быть найден из системы уравнений

Зная дифференциал dz=p dx+q dy , находим частные производные и .

Пример. Функция z аргументов х и у задана уравнениями x=u+v, y=u²+v², z=u²+v² (u≠v ).

Найти и .

Решение. 1-й способ. Дифференцированием находим три уравнения, связывающие дифференциалы всех пяти переменных:

Из первых двух уравнений определим du и dv :

.

Подставим в третье уравнение найденные значения du и dv :

.

2-й способ. Из третьего данного уравнения можно найти:

Продифференцируем первые два уравнения сначала по х, затем по у :

Из первой системы найдем: .

Из второй системы найдем: .

Подставляя выражения и в формулу (5), получим:

Замена переменных

При замене переменных в дифференциальных выражениях входящие в них производные следует выразить через другие производные по правилам дифференцирования сложной функции.

1°. Замена переменных в выражениях, содержащих обыкновенные производные.

,

полагая .

у по х через производные от у по t . Имеем:

,

.

Подставляя найденные выражения производных в данное уравнение и заменяя х через , получим:

Пример. Преобразовать уравнение

,

приняв за аргумент у , а за функцию х.

Решение. Выразим производные от у по х через производные от х по у.

.

Подставив эти выражения производных в данное уравнение, будем иметь:

,

или, окончательно,

.

Пример . Преобразовать уравнение

перейдя к полярным координатам

x=r cos φ, y=r cos φ.

Решение. Рассматривая r как функцию φ , из формул (1) получим:

dх = соsφ dr – r sinφ d φ, dy=sinφ+r cosφ dφ,

Формула производной функции, заданной неявно. Доказательство и примеры применения этой формулы. Примеры вычисления производных первого, второго и третьего порядка.

Содержание

Производная первого порядка

Пусть функция задана неявным образом с помощью уравнения
(1) .
И пусть это уравнение, при некотором значении , имеет единственное решение . Пусть функция является дифференцируемой функцией в точке , причем
.
Тогда, при этом значении , существует производная , которая определяется по формуле:
(2) .

Доказательство

Для доказательства рассмотрим функцию как сложную функцию от переменной :
.
Применим правило дифференцирования сложной функции и найдем производную по переменной от левой и правой частей уравнения
(3) :
.
Поскольку производная от постоянной равна нулю и , то
(4) ;
.

Формула доказана.

Производные высших порядков

Перепишем уравнение (4), используя другие обозначения:
(4) .
При этом и являются сложными функциями от переменной :
;
.
Зависимость определяет уравнение (1):
(1) .

Находим производную по переменной от левой и правой части уравнения (4).
По формуле производной сложной функции имеем:
;
.
По формуле производной произведения :

.
По формуле производной суммы :


.

Поскольку производная правой части уравнения (4) равна нулю, то
(5) .
Подставив сюда производную , получим значение производной второго порядка в неявном виде.

Дифференцируя, аналогичным образом, уравнение (5), мы получим уравнение, содержащее производную третьего порядка :
.
Подставив сюда найденные значения производных первого и второго порядков, найдем значение производной третьего порядка.

Продолжая дифференцирование, можно найти производную любого порядка.

Примеры

Пример 1

Найдите производную первого порядка от функции, заданной неявно уравнением:
(П1) .

Решение по формуле 2

Находим производную по формуле (2):
(2) .

Перенесем все переменные в левую часть, чтобы уравнение приняло вид .
.
Отсюда .

Находим производную по , считая постоянной.
;
;
;
.

Находим производную по переменной , считая переменную постоянной.
;
;
;
.

По формуле (2) находим:
.

Мы можем упростить результат если заметим, что согласно исходному уравнению (П.1), . Подставим :
.
Умножим числитель и знаменатель на :
.

Решение вторым способом

Решим этот пример вторым способом. Для этого найдем производную по переменной левой и правой частей исходного уравнения (П1).

Применяем :
.
Применяем формулу производной дроби :
;
.
Применяем формулу производной сложной функции :
.
Дифференцируем исходное уравнение (П1).
(П1) ;
;
.
Умножаем на и группируем члены.
;
.

Подставим (из уравнения (П1)):
.
Умножим на :
.

Пример 2

Найти производную второго порядка от функции , заданной неявно с помощью уравнения:
(П2.1) .

Дифференцируем исходное уравнение, по переменной , считая что является функцией от :
;
.
Применяем формулу производной сложной функции.
.

Дифференцируем исходное уравнение (П2.1):
;
.
Из исходного уравнения (П2.1) следует, что . Подставим :
.
Раскрываем скобки и группируем члены:
;
(П2.2) .
Находим производную первого порядка:
(П2.3) .

Чтобы найти производную второго порядка, дифференцируем уравнение (П2.2).
;
;
;
.
Подставим выражение производной первого порядка (П2.3):
.
Умножим на :

;
.
Отсюда находим производную второго порядка.

Пример 3

Найти производную третьего порядка при от функции , заданной неявно с помощью уравнения:
(П3.1) .

Дифференцируем исходное уравнение по переменной считая, что является функцией от .
;
;
;
;
;
;
(П3.2) ;

Дифференцируем уравнение (П3.2) по переменной .
;
;
;
;
;
(П3.3) .

Дифференцируем уравнение (П3.3).
;
;
;
;
;
(П3.4) .

Из уравнений (П3.2), (П3.3) и (П3.4) находим значения производных при .
;
;
.

Производная сложной функции. Полная производная

Пусть z=ƒ(х;у) - функция двух переменных х и у, каждая из которых является функцией независимой переменной t: х = x(t), у = y(t). В этом случае функция z = f(x(t);y(t)) является сложной функцией одной независимой переменной t; переменные х и у - промежуточные переменные.

Если z = ƒ(х;у) - дифференцируемая в точке М(х;у) є D функция и х = x(t) и у = y(t) - дифференцируемые функции независимой переменной t, то производная сложной функции z(t) = f(x(t);y(t)) вычисляется по формуле

Дадим независимой переменной t приращение Δt. Тогда функции х = = x(t) и у = y{t) получат приращения Δх и Δу соответственно. Они, в свою очередь, вызовут приращение Az функции z.

Так как по условию функция z - ƒ(х;у) дифференцируема в точке М(х; у), то ее полное приращение можно представить в виде

где а→0, β→0 при Δх→0, Δу→0 (см. п. 44.3). Разделим выражение Δz на Δt и перейдем к пределу при Δt→0. Тогда Δх→0 и Δу→0 в силу непрерывности функций х = x(t) и у = y(t) (по условию теоремы - они дифференцируемые). Получаем:

Частный случай: z=ƒ(х;у), где у=у(х), т. е. z=ƒ(х;у(х)) - сложная функция одной независимой переменной х. Этот случай сводится к предыдущему, причем роль переменной t играет х. Согласно формуле (44.8) имеем:

Формула (44.9) носит название формулы полной производной.

Общий случай: z=ƒ(х;у), где x=x(u;v), у=у(u;v). Тогда z= f(x(u;v);y(u;v)) - сложная функция независимых переменных u и v. Ее частные производные можно найти, используя формулу (44.8) следующим образом. Зафиксировав v, заменяем в ней соответствующими частными производными