Меню
Бесплатно
Главная  /  Органический мира  /  Клетка и ее строение рисунок. Строение животной и растительной клетки. Типы растительных тканей

Клетка и ее строение рисунок. Строение животной и растительной клетки. Типы растительных тканей

Клетки делятся на прокариотические и эукариотические. Первые - это водоросли и бактерии, которые содержат генетическую информацию в одной единственной органелле, - хромосоме, а эукариотические клетки, составляющие более сложные организмы, такие как человеческое тело, имеют четко дифференцированное ядро, в котором находится несколько хромосом с генетическим материалом.

Эукариотическая клетка

Прокариотическая клетка

Строение

Клеточная или цитоплазматическая мембрана

Цитоплазматическая мембрана (оболочка) - это тонкая структура, которая отделяет содержимое клетки от окружающей среды. Она состоит из двойного слоя липидов с белковыми молекулами толщиной примерно 75 ангстрем.

Клеточная мембрана сплошная, но у нее имеются многочисленные складки, извилины, и поры, что позволяет регулировать прохождение через нее веществ.

Клетки, ткани, органы, системы и аппараты

Клетки , Человеческий организм - слагаемое элементов, которые слаженно действуют, чтобы эффективно выполнять все жизненные функции.

Ткань - это клетки одинаковой формы и строения, специализированные на выполнении одной и той же функции. Различные ткани объединяются и образуют органы, каждый из которых выполняет конкретную функцию в живом организме. Кроме того, органы также группируются в систему для выполнения определенной функции.

Ткани:

Эпителиальная - защищает и покрывает поверхность тела и внутренние поверхности органов.

Соединительная - жировая, хрящевая и костная. Выполняет различные функции.

Мышечная - гладкая мышечная ткань, поперечнополосатая мышечная ткань. Сокращает и расслабляет мышцы.

Нервная - нейроны. Вырабатывает и передает и принимает импульсы.

Размер клеток

Величина клеток очень разная, хотя в основном она колеблется от 5 до 6 микронов (1 микрон = 0,001 мм). Этим объясняется тот факт, что многие клетки не могли рассмотреть до изобретения электронного микроскопа, разрешающая способность которого составляет от 2 до 2000 ангстрем (1 ангстрем = 0,000 000 1 мм).Размер некоторых микроорганизмов меньше 5 микрон, но есть и клетки-гиганты. Из наиболее известных - это желток птичьих яиц, яйцеклетка размером около 20 мм.

Есть еще более поразительные примеры: клетка ацетабулярии, морской одноклеточной водоросли, достигает 100 мм, а рами, травянистого растения, - 220 мм - больше ладони.

От родителей к детям благодаря хромосомам

Ядро клетки претерпевает различные изменения, когда клетка начинает делиться: исчезают оболочка и ядрышки; в это время хроматин становится более плотным, образуя в итоге толстые нити - хромосомы. Хромосома состоит из двух половин - хроматид, соединенных в месте сужения (центрометр).

Наши клетки, так же как и все клетки животных и растений, подчиняются так называемому закону численного постоянства, согласно которому число хромосом определенного вида постоянно.

Кроме того, хромосомы распределяются парами, идентичными между собой.

В каждой клетке нашего тела имеется 23 пары хромосом, представляющих собой несколько удлиненных молекул ДНК. Молекула ДНК принимает форму двойной спирали, состоящей из двух групп сахарофосфата, откуда в виде ступенек винтовой лестницы выступают азотистые основы (пурины и пирамидины).

Вдоль каждой хромосомы располагаются гены, ответственные за наследственность, передачу генных признаков от родителей к детям. Именно они определяют цвет глаз, кожи, форму носа и т. д.

Митохондрии

Митохондрии - это органеллы округлой или удлиненной формы, распределенные по всей цитоплазме, содержащие водянистый раствор ферментов, способные осуществлять многочисленные химические реакции, например клеточное дыхание.

С помощью этого процесса высвобождается энергия, которая необходима клетке для выполнения ее жизненных функций. Митохондрии находятся в основном в наиболее активных клетках живых организмов: клетках поджелудочной железы и печени.

Ядро клетки

Ядро, одно в каждой человеческой клетке, является ее основным компонентом, так как это организм, управляющий функциями клетки, и носитель наследственных признаков, что доказывает его важность в размножении и передаче биологической наследственности.

В ядре, размер которого колеблется от 5 до 30 микрон, можно различить следующие элементы:

  • Ядерная оболочка. Она двойная и позволяет веществам проходить между ядром и цитоплазмой благодаря своей пористой структуре.
  • Ядерная плазма. Светлая, вязкая жидкость, в которую погружены остальные ядерные структуры.
  • Ядрышко. Сферическое тельце, изолированное или в группах, участвующее в образовании рибосом.
  • Хроматин. Вещество, которое может принимать различную окраску, состоящее из длинных нитей ДНК (дезоксирибонуклеиновой кислоты). Нити представляют собой частицы, гены, каждый из которых содержит информацию об определенной функции клетки.

Ядро типичной клетки

Клетки кожи живут в среднем одну неделю. Эритроциты живут 4 месяца, а костные клетки - от 10 до 30 лет.

Центросома

Центросома обычно находится рядом с ядром и играет важнейшую роль в митозе, или клеточном делении.

Она состоит из 3 элементов:

  • Диплосома. Состоит из двух центриол - цилиндрических структур, расположенных перпендикулярно.
  • Центросфера. Полупрозрачное вещество, в которое погружена диплосома.
  • Астер. Лучистое образование из нитей, выходящих из центросферы, имеющее важное значение для митоза.

Комплекс Гольджи, лизосомы

Комплекс Гольджи состоит из 5-10 плоских дисков (пластин), в котором различают основной элемент - цистерну и несколько диктиосом, или скопление цистерн. Эти диктиосомы разъединяются и распределяются равномерно во время митоза, или деления клетки.

Лизосомы, «желудок» клетки, образуются из пузырьков комплекса Гольджи: они содержат пищеварительные ферменты, которые позволяют им переваривать пишу, поступающую в цитоплазму. Их внутренняя часть, или микус, выстлана толстым слоем полисахаридов, которые препятствуют тому, чтобы эти ферменты разрушили собственный клеточный материал.

Рибосомы

Рибосомы - это клеточные органеллы диаметром около 150 ангстрем, которые прикреплены к оболочкам эндоплазматического ретикулума или свободно размещаются в цитоплазме.

Они состоят из двух подъединиц:

  • большая подъединица состоит из 45 молекул белка и 3 РНК (рибонуклеиновой кислоты);
  • меньшая подъединица состоит из 33 молекул белка и 1 РНК.

Рибосомы объединяются в полисомы с помощью молекулы РНК и синтезируют белки из молекул аминокислот.

Цитоплазма

Цитоплазма - это органическая масса, расположенная между цитоплазматической мембраной и оболочкой ядра. Содержит внутреннюю среду - гиалоплазму - вязкую жидкость, состоящую из большого количества воды и содержащую белки, моносахариды и жиры в растворенном виде.

Она является частью клетки, наделенной жизненной активностью, потому что внутри нее двигаются различные клеточные органеллы и происходят биохимические реакции. Органеллы выполняют в клетке ту же роль, что и органы в человеческом теле: производят жизненно важные вещества, генерируют энергию, выполняют функции пищеварения и выведения органических веществ и т. д.

Примерно треть цитоплазмы составляет вода.

Кроме того, в цитоплазме содержится 30% органических веществ (углеводов, жиров, белков) и 2-3% неорганических веществ.

Эндоплазматический ретикулум

Эндоплазматический ретикулум - это структура в виде сети, образованная заворачиванием цитоплазматической оболочки в саму себя.

Считается, что этот процесс, известный как инвагинация, привел к появлению более сложных существ с большими потребностями в белках.

В зависимости от наличия или отсутствия рибосом в оболочках различают два типа сетей:

1. Эндоплазматический ретикулум складчатый. Совокупность плоских структур, соединенных между собой и сообщающихся с ядерной мембраной. К ней прикреплено большое количество рибосом, поэтому ее функция заключается в накоплении и выделении белков, синтезированных в рибосомах.

2. Эндоплазматический ретикулум гладкий. Сеть из плоских и трубчатых элементов, которая сообщается со складчатым эндоплазматическим ретикулумом. Синтезирует, выделяет и переносит жиры по всей клетке, вместе с белками складчатого ретикулума.

Хотите читать всё самое интересное о красоте и здоровье, подпишитесь на рассылку !

План лекции

1. Общая характеристика растительной клетки.

3. Вакуоль и ее функции.

5. Цитоплазматические включения в растительной клетке.

6. Строение и функции ядра.

7. Типы деления клетки.

1. Общая характеристика растительной клетки

Клетка представляет собой основную структурную и функциональную единицу всех живых существ и обладает всеми признаками живого: ростом, обменом веществ и энергией с окружающей средой, делением, раздражимостью, наследственностью и др. Среди растений есть виды, представленные одной клеткой (некоторые виды водорослей), однако большинство является многоклеточными организмами. Строение клеток разнообразно и зависит от выполняемых ими функций.

По степени сложности внутренней организации клетки можно разделить на 2 типа: прокариотические и эукариотические. У прокариотов, в отличие от эукариотов, нет оформленного ядра, хромосом, пластид, митохондрий, эндоплазматического ретикулума, аппарата Гольджи, отсутствуют митоз и типичный половой процесс. Некоторые бактерии являются анаэробами.

К эукариотическим организмам, наряду с животными и грибами, относятся и растения. Они обладают сходным строением клеток, что связано с единым происхождением. К важнейшим отличительным признакам растительной клетки, возникшим в результате приспособления к автотрофному питанию, относятся следующие: жесткая углеводная оболочка; пластиды; центральная вакуоль; плазмодесмы; основное вещество запаса – крахмал.

В типичном случае растительная клетка состоит из протопласта (живого содержимого) и окружающей его оболочки – клеточной стенки. Общий план строения растительной клетки приведен на рис. 1.

Общий план строения растительной клетки

Растительная клетка

Клеточная Протопласт Включения

Ядро Цитоплазма

Гиалоплазма Органеллы

(цит.матрикс)

Немембранные Одномембранные Двумембранные

(рибосомы, (ЭПР, аппарат Гольджи, (митохондрии,пластиды)

микротрубочки, плазмалемма, вакуоль,

микрофиламенты) лизосомы, пероксисомы)

Протопласт можно подразделить на цитоплазму и ядро . Цитоплазма состоит из гиалоплазмы и органелл . Гиалоплазма представляет собой непрерывную водную коллоидную фазу клетки и обладает определенной вязкостью. Она способна к активному движению за счет трансформации химической энергии в механическую. Гиалоплазма связывает все находящиеся в ней органеллы, обеспечивая их постоянное взаимодействие. Через нее идет транспорт аминокислот, жирных кислот, нуклеотидов, сахаров, неорганических ионов, перенос АТФ.



Органеллы – это структурно-функциональные единицы цитоплазмы. В клетке выделяют три типа органелл: немембранные, одномембранные и двумембранные. Рассмотрим строение органелл, присущих растительным клеткам.

Рис.1. Общий план строения растительной клетки

2. Пластиды и их характеристика.

Пластиды встречаются только в растительных клетках. Выделяют три типа пластид (хлоро–, лейко– и хромопласты), которые отличаются друг от друга составом пигментов (цветом), строением и выполняемыми

функциями.

Хлоропласты имеют зеленый цвет и встречаются во всех зеленых органах растения (листьях, стеблях, незрелых плодах). Они содержат зеленый пигмент хлорофилл, который находится в хлоропластах в нескольких формах. Кроме хлорофилла в них содержатся пигменты, относящиеся к группе каротиноидов, в частности желтый (ксантофилл) и оранжевый (каротин), но обычно они маскируются хлорофиллом.

Хлоропласты, как правило, имеют линзовидную форму и сложное строение. Снаружи они ограничены оболочкой, состоящей из двух мембран.

У хлоропластов, особенно высших растений, значительно развиты внутренние мембранные поверхности, имеющие форму плоских мешочков, называемых тилакоидами (ламеллами). На их мембранах находится хлорофилл. Тилакоиды могут располагаться одиночно, но чаще собраны в стопочки – граны . Внутренняя среда пластид называется стромой . В строме хлоропластов всегда встречаются пластоглобулы – включения жирных масел, в которых растворены каротиноиды, а также рибосомы, светлые зоны с нитями ДНК, а в некоторых случаях – крахмальные зерна, белковые кристаллы. Основная функция хлоропластов – фотосинтез. Кроме того, в них, как и в митохондриях, происходит процесс образования АТФ из АДФ, который называется фотофосфорилированием. Хлоропласты способны также к синтезу и разрушению полисахаридов (крахмала), некоторых липидов, аминокислот, собственного белка.

Лейкопласты – бесцветные мелкие пластиды, встречающиеся в запасающих органах растений (клубнях, корневищах, семенах и т. д.). Для лейкопластов характерно слабое развитие внутренней системы мембран, представленной одиночными тилакоидами, иногда трубочками и пузырьками. Остальные компоненты лейкопластов (оболочка, строма, рибосомы, ДНК, пластоглобулы) сходны с описанными для хлоропластов. Основная функция лейкопластов – синтез и накопление запасных питательных веществ, в пер-

вую очередь крахмала, иногда белков. Лейкопласты, накапливающие крахмал, называют амилопластами, белок – протеопластами, жирные масла – олеопластами.

Пластиды, окрашенные в желтый, оранжевый, красный цвета, носят название хромопластов . Их можно встретить в лепестках (лютик, одуванчик, тюльпан), корнеплодах (морковь), зрелых плодах (томат, роза, рябина, хурма) и осенних листьях. Яркий цвет хромопластов обусловлен наличием каротиноидов, растворенных в пластоглобулах. Внутренняя система мембран в данном типе пластид, как правило, отсутствует. Хромопласты имеют косвенное биологическое значение: яркая окраска лепестков и плодов привлекает опылителей и распространителей плодов.

В молодых, меристематических клетках имеются пропластиды – органеллы, окруженные двумя мембранами и способные передвигаться подобно амебам. В онтогенезе, в зависимости от типа ткани и условий среды пропластиды могут развиваться в хлоропласты (на свету) или лейкопласты (чаще – без света, за исключением лейкопластов в эпидермисе), см. рис.2.

3. Вакуоль и ее функции

Вакуоли содержатся почти во всех растительных клетках. Они представляют собой полости, заполненные клеточным соком и ограниченные от цитоплазмы мембраной – тонопластом . Для большинства зрелых клеток растений характерна центральная вакуоль. Клеточный сок, содержащийся в вакуоли, представляет собой водный раствор различных веществ, являющихся продуктами жизнедеятельности протопласта. В его состав могут входить углеводы (сахара и полисахариды), белки, органические кислоты и их соли, минеральные ионы, алкалоиды, гликозиды, танины и другие растворимые в воде соединения.

Вакуоли в растительных клетках выполняют две основные функции: накопление запасных веществ, отходов и поддержание тургора. На второй функции остановимся подробнее. Концентрация ионов и сахаров в клеточном соке вакуоли, как правило, выше, чем в оболочке клетки. Поэтому при достаточном насыщении оболочки водой последняя будет поступать в вакуоль путем диффузии. Такой однонаправленный транспорт воды через полупроницаемую мембрану носит название «осмос». Поступающая в клеточный

сок вода оказывает давление на постенный протопласт, а через него – на оболочку, вызывая напряженное, упругое ее состояние, или тургор . Он дает сочным органам растения форму и положение в пространстве и является одним из факторов роста клетки.

Если клетку поместить в гипертонический раствор осмотически активного вещества (NaCl, KNO 3 , сахарозы), т. е. в раствор с большей концентрацией, чем концентрация клеточного сока, то начнется осмотический выход воды из вакуоли. В результате этого объем ее сократится, протопласт отойдет от оболочки по направлению к центру клетки, тургор исчезнет. Это явление обратимо и носит название «плазмолиз».

4. Строение клеточной оболочки.

Клеточная оболочка – структурное образование на периферии клетки, придающее ей прочность, сохраняющее ее форму и защищающее протопласт. Оболочка, как правило, бесцветна и прозрачна, легко пропускает солнечный свет. По ней могут передвигаться вода и растворенные низкомолекулярные вещества. Оболочки соседних клеток соединены пектиновыми веществами, образующими срединную пластинку.

Скелетным веществом оболочки клеток высших растений является целлюлоза. Молекулы целлюлозы, представляющие собой очень длинные цепи, собраны по нескольку десятков в группы – микрофибриллы . В них молекулы располагаются параллельно друг другу и связаны многочисленными водородными связями. Они обладают эластичностью, высокой прочностью и создают структурный каркас оболочки, а также погружены в ее аморфный матрикс, состоящий в основном из гемицеллюлоз и пектиновых веществ.

Молекулы матричных полисахаридов значительно короче молекул целлюлозы. Их цепи располагаются в оболочке достаточно упорядоченно и образуют многочисленные поперечные (ковалентные и водородные) связи как друг с другом, так и с целлюлозными микрофибриллами. Эти связи значительно повышают прочность клеточной оболочки. В зависимости от типа ткани, в состав которой входит клетка, в матриксе оболочки могут быть и другие органические (лигнин, кутин, суберин, воск) и неорганические (кремнезем, оксалат кальция) вещества.

В образовании структурных элементов клеточной оболочки принимают участие плазмалемма, аппарат Гольджи и микротрубочки. На плазмалемме происходит синтез микрофибрилл целлюлозы, а микротрубочки способствуют их ориентации. Аппарат Гольджи выполняет функцию образования

веществ матрикса оболочки, в частности гемицеллюлоз и пектиновых веществ.

Различают первичную и вторичную клеточные оболочки. Меристематические и молодые растущие клетки, реже клетки постоянных тканей, имеют первичную оболочку, тонкую, богатую пектином и гемицеллюлозой.

Вторичная клеточная оболочка образуется по достижении клеткой окончательного размера и накладывается слоями на первичную со стороны протопласта. Она обычно трехслойная, с большим содержанием целлюлозы.

Плазмодесмы присущи только растительным клеткам. Они представляют собой тонкие цитоплазматические тяжи, соединяющие соседние клетки. В одной клетке может содержаться от нескольких сотен до десятков тысяч плазмодесм. Стенки канала плазмодесмы выстланы плазмалеммой . По центру канала проходит мембранный цилиндр – центральный стержень плазмодесмы, соединенный с мембраной ЭПР. Между центральным стержнем и плазмалеммой в канале находится гиалоплазма . Плазмодесмы выполняют функцию межклеточного транспорта веществ.

Порами называют неутолщенные места оболочки (углубления), на которых отсутствует вторичная оболочка. Они содержат тончайшие отверстия, через которые проходят плазмодесмы. По форме порового канала различают простые и окаймленные поры. У простых диаметр канала приблизительно одинаков на всем протяжении от полости клетки до первичной оболочки и канал имеет форму узкого цилиндра. У окаймленных канал суживается в процессе отложения вторичной оболочки; поэтому внутреннее отверстие поры, выходящее в полость клетки, значительно уже, чем наружное, упирающееся в первичную оболочку. В смежных клетках поры располагаются напротив друг друга. Это облегчает транспорт воды и растворенных веществ от клетки к клетке. Общие поры имеют вид канала, разделенного перегородкой из срединной пластинки и первичными оболочками.

5.Цитоплазматические включения в растительной клетке.

Включения – это локальная концентрация некоторых продуктов обмена в определенных местах клетки.

Крахмальные зерна образуются только в строме пластид живых клеток. В хлоропластах на свету откладываются зерна ассимиляционного (первичного) крахмала. Значительно большего объема достигают зерна запасного (вторичного) крахмала, откладывающиеся в лейкопластах (амилопластах).

Различают простые, полусложные и сложные зерна.

Липидные капли накапливаются в гиалоплазме. Наиболее богаты ими семена и плоды, где они могут быть преобладающим по объему компонентом протопласта.

Запасные белки чаще всего откладываются в вакуолях в виде зерен округлой или овальной формы, бывают простыми и сложными (кристаллиты, глобоиды).

Кристаллы оксалата кальция – конечные продукты обмена; откладываются обычно в вакуолях. По форме различают одиночные кристаллы, друзы (шаровидные образования, состоящие из многих мелких сросшихся кристаллов), рафиды (мелкие игольчатые кристаллы, собранные в пучки), кристаллический песок.

6. Строение и функции ядра

Ядро представляет собой обязательный органоид живой клетки. Оно всегда располагается в цитоплазме. В молодой клетке ядро обычно занимает центральное положение. Иногда оно остается в центре клетки, и окружено цитоплазмой (т. н. ядерный кармашек), которая связана с постенным слоем тонкими тяжами.

Ядро отделено от цитоплазмы двумембранной ядерной оболочкой, пронизанной многочисленными порами. Содержимое интерфазного (неделящегося) ядра составляют нуклеоплазма и погруженные в нее оформленные элементы – ядрышки и хроматин.

Ядрышки – сферические, довольно плотные тельца, состоящие из рибосомальной РНК, белков и небольшого количества ДНК. Их основная функция – синтез р-РНК и образование рибонуклеопротеидов (рРНК+белок), т. е. предшественников рибосом. Предрибосомы из ядрышка попадают в нуклеоплазму и через поры в ядерной оболочке переходят в цитоплазму, где и заканчивается их формирование.

Хроматин содержит почти всю ДНК ядра. В интерфазном ядре он имеет вид длинных тонких нитей, представляющих собой двойную спираль ДНК, закрученную в виде рыхлых спиралей более высокого порядка (суперспиралей). ДНК связана с белками-гистонами, располагающимися подобно бусинкам на ее нити. Хроматин, будучи местом синтеза различных РНК (транскрипции), представляет собой особое состояние хромосом, выявляющихся при делении ядра. Можно сказать, что хроматин – это функциони-

рующая, активная форма хромосом. Дело в том, что в интерфазном ядре хромосомы сильно разрыхлены и имеют большую активную поверхность.

Такое диффузное распределение генетического материала наилучшим образом соответствует контролирующей роли хромосом в обмене веществ клетки. Следовательно, хромосомы присутствуют в ядре всегда, но в интерфазной клетке не видны, потому что находятся в деконденсированном (разрых- ленном) состоянии.

6. Типы деления клетки.

Митотическое деление ядра. Митоз – основной способ деления ядра эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении генетического материала между дочерними клетками, что обеспечивает образование абсолютно идентичных клеток и сохраняет преемственность в ряду клеточных поколений. В процессе митоза условно выделяют 5 стадий: профаза, прометафаза, метафаза, анафаза и телофаза.

Важнейшие признаки профазы – конденсация хромосом, распад ядрышка и ядерной оболочки и начало формирования веретена деления. На прометафазе наблюдается интенсивное движение хромосом, микротрубочки веретена вступают в контакт с хромосомами, а митотический аппарат приобретает форму веретена. На метафазе завершается образование веретена деления, хромосомы перестают двигаться и выстраиваются по экватору веретена, образуя однослойную метафазную пластинку.

Анафаза характеризуется разделением каждой хромосомы на две дочерние хроматиды и их расхождением к противоположным полюсам клетки. Телофаза длится с момента прекращения движения хромосом до окончания процессов, связанных с реконструкцией дочерних ядер и с разрушением веретена деления. Обычно за телофазой следует цитокинез, в течение которого происходит окончательное обособление двух дочерних клеток.

Процесс образования клеточной оболочки начинается на телофазе. В то время как в делящейся клетке происходит распад митотического веретена, по экватору клетки возникают многочисленные новые, относительно короткие микротрубочки, ориентированные перпендикулярно плоскости экватора.

Такая система трубочек носит название «фрагмопласт». В его центральной части появляются многочисленные пузырьки Гольджи, содержащие пектиновые вещества. Считается, что микротрубочки контролируют направление движения пузырьков Гольджи. В результате постепенного слияния пузырь-

ков в направлении от центра к периферии возникают длинные плоские мешочки (мембранные цистерны), которые, сливаясь с плазматической мембраной, делят материнскую клетку на две дочерние. Так возникает межклеточная серединная пластинка. Сливающиеся мембраны пузырьков Гольджи становятся частью плазмалеммы дочерних клеток. Далее каждая клетка начинает откладывать свою клеточную оболочку.

Таким образом, живая клетка проходит ряд последовательных событий, составляющих клеточный цикл. Продолжительность клеточного цикла варьируется в зависимости от типа клетки и внешних условий. Обычно клеточный цикл делят на интерфазу и пять фаз митоза.

Интерфаза – это период между двумя последовательными митотическими делениями. Ее можно разделить на три периода:

G1 – период общего роста и деления органелл;

S – период удвоения ДНК;

G2 – период подготовки к делению (формирование веретена деления и других структур).

Мейотическое деление ядра. Мейоз – редукционное деление ядра. Мейоз включает два следующих друг за другом деления, в каждом из которых выделяют те же фазы, что и в обычном митозе.

На профазе первого деления гомологичные хромосомы располагаются попарно: они соединяются, скручиваются, контактируя друг с другом по всей длине, т. е. конъюгируют, и могут обмениваться участками (кроссинговер). Хроматин конденсируется: выявляются хромосомы, исчезает ядрышко,

начинает формироваться веретено деления. На прометафазе № 1 окончательно фрагментируется ядерная оболочка и образуется веретено деления.

На метафазе № 1 гомологичные хромосомы образуют двухслойную метафазную пластинку, располагаясь по двум сторонам от экваториальной плоскости. Однако основное отличие от митоза наблюдается на анафазе № 1, когда гомологичные хромосомы каждой пары расходятся по полюсам деления без продольного разъединения на хроматиды.

В результате на телофазе № 1 у полюсов оказывается вдвое меньше хромосом, состоящих не из одной, а из двух хроматид. Распределение гомологичных хромосом по дочерним ядрам носит случайный характер.

Сразу без удвоения в образовавшихся дочерних ядрах начинается второе деление мейоза, которое полностью повторяет митоз с разделением хромосом на хроматиды. В результате этих двух делений образуются четыре гаплоидные клетки, связанные друг с другом (тетрада). При этом процесс удвоения ДНК между двумя делениями отсутствует; поэтому образуются гаплоидные клетки, несущие различную генетическую информацию. Двойной набор хромосом восстанавливается при оплодотворении. Биологическое значение мейоза состоит не только в обеспечении постоянства числа хромосом у организмов из поколения в поколение. Благодаря кроссинговеру и случайному расхождению гомологичных хромосом на анафазе № 1 деления, возникающие гаплоидные клетки содержат различные

сочетания хромосом. Это обеспечивает разнообразие хромосомных наборов и признаков у последующих поколений и, таким образом, дает материал для эволюции организмов.

Следует отметить, что мейоз может происходить на различных фазах жизненного цикла растений. Так, для большинства растений характерен спорический мейоз, приводящий к образованию гаплоидных спор. Для некоторых водорослей свойственны гаметический и зиготический (происходит в зиготе после оплодотворения) типы мейоза.

Отклонения от нормальных делений.

Амитоз – прямое деление интерфазного ядра путем перетяжки без образования структуры хромосом. Он может сопровождаться делением клетки либо ограничиваться делением ядра, что ведет к образованию многоядерных клеток. При этом типе деления наследственный материал не всегда равномерно распределяется между дочерними ядрами. Амитоз чаще встречается в клетках патологических или стареющих тканей.

Эндомитоз – это процесс многократного удвоения хромосомного материала в одном и том же ядре. Это происходит из-за нарушения митоза, когда в профазе ядерная оболочка не фрагментируется и количество хромосомного материала в одном ядре многократно удваивается. В результате плоидность клеток увеличивается в десятки и сотни раз. Эндомитоз характерен для клеток железистых волосков, члеников сосудов, склереид и др.

Полиплоидия. В некоторых случаях образованию половых клеток не предшествует процесс мейоза и они остаются диплоидными. При оплодотворении клетки нового растения будут содержать 3n или 4n набор хромосом. Степень плоидности может быть больше четырех (8-, реже 16-, 32- кратной и т.д.). Такие клетки называют полиплоидными.

Растения-полиплоиды обычно имеют крупные размеры. Многие высокопродуктивные сорта растений являются полиплоидами (томаты, пшеница, кукуруза).

Лекция № 2

Структура растительной клетки

1. Особенности строения клеток растений

2. Основные химические компоненты протопласта

3. Цитоплазма

4. Ядро. Деление ядра и клетки.

5. Производные протопласта.

Открытие и изучение клетки связаны с созданием светового микроскопа в конце XVI – начале XVII в. Растительную клетку открыл англичанин Роберт Гук в 1665 г., рассматривая под микроскопом срез растительной пробки. Термин “клетка” он употребил впервые в своей книге “Микрография” при описании ячеек этой пробки. На рубеже 30-40-х годов XIX в. немецкими учеными зоологом Т.Шванном и ботаником М.Шлейденом сформулирована клеточная теория, главный тезис которой – признание клеточного строения всех живых организмов. Клетка – главный компонент морфологического строения организмов, так как именно из клеток состоят ткани и органы. Клетка – основа многоклеточных организмов и в физиологическом отношении, так как является исходной единицей функциональной активности его органов и тканей. Клетка – сложная целостная система, образованная из взаимодействующих компонентов и выполняющая функцию связи между индивидуумом и видом, так как в ней сосредоточена наследственная информация, обеспечивающая сохранность вида и разнообразие его особей.

1. Особенности строения клеток растений. Размеры большинства клеток покрытосеменных растений колеблются от 10 до 100 мкм. Число клеток в теле растения, как правило, очень велико, например, более чем 100 млн. в одном листе дерева.

По форме различают два основных типа клеток: паренхимные и прозенхимные. Клетки, диаметр которых по всем направлениям различается не сильно, называют паренхимными (греч. пара – равный, энхима - начинка). Обычно в зрелом состоянии они остаются живыми. Примером паренхимных клеток может служить большинство клеток листьев, сочных плодов. Очень часто разрастание клеток идет преимущественно в одном направлении, в результате чего образуются сильно вытянутые, прозенхимные (греч. прос – по направлению к) клетки. Концы их обычно заострены. Прозенхимные клетки характерны для древесины. В зрелом состоянии обычно они мертвы.

В растительной клетке различают пять структурных элементов: 1. Клеточная стенка; 2. Одна крупная и несколько мелких вакуолей с клеточным соком; 3. Вязкая цитоплазма, расположенная между клеточной стенкой и вакуолью; 4. Ядро, погруженное в цитоплазму; 5. Пластиды.

Все компоненты клетки можно разделить на две группы: а) протопласт – основа клетки с ее живым содержимым – органеллами; б) производные протопласта – клеточная стенка и вакуоль с клеточным соком. Большую часть протопласта растительной клетки занимает цитоплазма, меньшую по массе – ядро. От вакуоли протопласт отграничен мембраной – тонопластом, от клеточной стенки – другой мембраной – плазмалеммой. От цитоплазмы ядро также отделено мембранами.

Протопласт (греч. протос – первый, пластос - оформленный) представляет собой многофазную коллоидную систему – гидрозоль, где дисперсной средой является на 90-95 % вода, а дисперсной фазой – органические вещества: белки, нуклеиновые кислоты, липиды, углеводы и др. Протопласт дифференцирован на различные компоненты, называемые органеллами (или органоидами). Органеллы погружены в гиалоплазму. Гиалоплазма с органеллами составляет цитоплазму клетки.

Своеобразие растительных клеток заключается в наличии у них прочных оболочек, пронизанных плазмодесмами (тончайшие цитоплазматические нити, или каналы, пересекающие оболочку смежных клеток), пластид и в большинстве случаев крупной центральной вакуоли.

Отличие растительной клетки от животной

Растительная клетка

Животная клетка

1. Растительная клетка крупнее животной

1. Форма клеток более разнообразная (нервные, мерцательные, кубические)

2. Оболочка растительной клетки состоит из целлюлозы

2. В состав оболочки животной клетки входят органические вещества

3. Растительная клетка имеет пластиды (хлоропласты, хромопласты, лейкопласты)

3. Пластиды отсутствуют

4. Происходит фотосинтез посредством световой энергии, в результате чего образуются органические вещества

4. Органические вещества синтезируются самостоятельно

2. Основные химические компоненты протопласта. Органические вещества клетки. Белки – биополимеры, образованные аминокислотами, составляют 40-50% сухой массы протопласта. Они участвуют в построении структуры и функциях всех органелл. В химическом отношении белки подразделяются на простые (протеины) и сложные (протеиды). Сложные белки могут образовывать комплексы с липидами – липопротеиды, с углеводами – гликопротеиды, с нуклеиновыми кислотами – нуклеопротеиды и т.д.

Белки входят в состав ферментов (энзимов), регулирующих все жизненно важные процессы.

Нуклеиновые кислоты – ДНК и РНК – важнейшие биополимеры протопласта, содержание которых составляет 1-2 % от его массы. Это вещества хранения и передачи наследственной информации. ДНК в основном содержится в ядре, РНК – в цитоплазме и ядре. ДНК содержит углеводный компонент дезоксирибозу, а РНК – рибонуклеиновую кислоту. Нуклеиновые кислоты – полимеры, мономерами которых являются нуклеотиды. Нуклеотид состоит из азотистого основания, сахара рибозы или дезоксирибозы и остатка фосфорной кислоты. Нуклеотиды бывают пяти типов в зависимости от азотистого основания. Молекула ДНК представлена двумя полинуклеотидными спиральными цепями, молекула РНК – одной.

Липиды – жироподобные вещества, содержащиеся в количестве 2-3 %. Это запасные энергетические вещества, входящие также в состав клеточной стенки. Жироподобные соединения покрывают тонким слоем листья растений, не давая им намокать во время обильных дождей. Протопласт растительной клетки содержит простые (жирные масла) и сложные липиды (липоиды, или жироподобные вещества).

Углеводы. Углеводы входят в состав протопласта каждой клетки в виде простых соединений (растворимых в воде сахаров) и сложных углеводов (нерастворимых или слаборастворимых) – полисахаридов. Глюкоза (С 6 Н 12 О 6) – моносахарид. Особенно много его в сладких плодах, он играет роль в образовании полисахаридов, легко растворяется в воде. Фруктоза, или плодовый сахар, - моносахарид, имеющий такую же формулу, но по вкусу значительно слаще. Сахароза (С 12 Н 22 О 11) – дисахарид, или тростниковый сахар; в больших количествах содержится в сахарном тростнике и корнеплодах сахарной свеклы. Крахмал и целлюлоза – полисахариды. Крахмал – резервный энергетический полисахарид, целлюлоза – основной компонент клеточной стенки. В клеточном соке корнеклубней георгина, корнях цикоря, одуванчика, девясила и других сложноцветных встречается еще один полисахарид – инулин.

Из органических веществ в клетках также содержатся витамины – физиологически активные органические соединения, контролирующие ход обмена веществ, гормоны, регулирующие процессы роста и развития организма, фитонциды – жидкие или летучие вещества, выделяемые высшими растениями.

Неорганические вещества в клетке. Клетки включают от 2 до 6 % неорганических веществ. В составе клетки обнаружено более 80 химических элементов. По содержанию элементы, входящие в состав клетки, можно разделить на три группы.

Макроэлементы. На их долю приходится около 99 % всей массы клетки. Особенно высока концентрация кислорода, углерода, азота и водорода. Их доля составляет 98 % всех макроэлементов. К оставшимся 2 % относятся - калий, магний, натрий, кальций, железо, сера, фосфор, хлор.

Микроэлементы. К ним принадлежат преимущественно ионы тяжелых металлов, входящие в состав ферментов, гормонов и других жизненно важных веществ. Содержание их в клетке колеблется от 0,001 до 0,000001 %. К микроэлементам относятся бор, кобальт, медь, молибден, цинк, ванадий, йод, бром и др.

Ультрамикроэлементы. Доля их не превышает 0,000001 %. К ним относятся уран, радий, золото, ртуть, бериллий, цезий, селен и другие редкие металлы.

Вода – составная часть любой клетки, это основная среда организма, принимающая непосредственное участие во многих реакциях. Вода - источник кислорода, выделяемого при фотосинтезе, и водорода, который используется для восстановления продуктов ассимиляции диоксида углерода. Вода – растворитель. Различают гидрофильные вещества (от греч. «hydros» - вода и «phileo» - люблю), хорошо растворимые в воде, и гидрофобные (греч. «phobos» - боязнь) – вещества, трудно или совсем не растворимые в воде (жиры, жироподобные вещества и др.). Вода – основное средство передвижения вещества в организме (восходящие и нисходящие токи растворов по сосудам растений) и в клетке.

3. Цитоплазма. В протопласте большую часть занимает цитоплазма с органоидами, меньшую - ядро с ядрышком. Цитоплазма имеет плазматические оболочки: 1) плазмалемму – наружную мембрану (оболочку); 2) тонопласт – внутреннюю мембрану, соприкасающуюся с вакуолью. Между ними расположена мезоплазма – основная масса цитоплазмы. В мезоплазму входят: 1) гиалоплазма (матрикс) – бесструктурная часть мезоплазмы; 2) эндоплазматическая сеть (ретикулум); 3) аппарат Гольджи; 4) рибосомы; 5) митохондрии (хондриосомы); 6) сферосомы; 7) лизосомы; 8) пластиды.

Цитоплазма представляет собой густой прозрачный коллоидный раствор. В зависимости от выполняемых физиологических функций каждая клетка имеет свой химический состав. Основу цитоплазмы составляет ее гиалоплазма, или матрикс, роль которой заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними. Цитоплазма имеет щелочную реакцию среды и на 60-90 % состоит из воды, в которой растворены различные вещества: до 10-20 % белков, 2-3 % жироподобных веществ, 1,5 % органических и 2-3 % неорганических соединений. В цитоплазме осуществляется важнейший физиологический процесс – дыхание, или гликолиз, в результате которого происходит расщепление глюкозы без доступа кислорода в присутствии ферментов с освобождением энергии и образованием воды и диоксида углерода. Цитоплазма пронизана мембранами – тончайшими пленками фосфолипидного строения. Мембраны образуют эндоплазматическую сеть – систему мелких канальцев и полостей, образующих сеть. Эндоплазматическая сеть называется шероховатой (гранулярной), если на мембранах канальцев и полостей находятся рибосомы или группы рибосом, которые выполняют синтез белка. Если эндоплазматическая сеть лишена рибосом, то называется гладкой (агранулярной). На мембранах гладкой эндоплазматической сети синтезируются липиды и углеводы.

Аппарат Гольджи – система уплощенных цистерн, лежащих параллельно и ограниченных двойными мембранами. От концов цистерн отшнуровываются пузырьки, через которые удаляются конечные или ядовитые продукты жизнедеятельности клетки, обратно же в диктиосомы поступают вещества, необходимые для синтеза сложных углеводов (полисахаридов) на построение клеточной стенки. Также комплекс Гольджи участвует в формировании вакуолей. Одно из важнейших биологических свойств цитоплазмы – циклоз (способность к движению), интенсивность которого зависит от температуры, степени освещения, снабжения кислородом и других факторов.

Рибосомы – мельчайшие частицы (от 17 до 23 нм), образованные рибонуклеопротеидами и молекулами белка. Они присутствуют в цитоплазме, ядре, митохондриях, пластидах; бывают одиночными и групповыми (полисомы). Рибосомы – центры синтеза белка.

Митохондрии – «энергетические станции» всех эукариотических клеток. Форма их разнообразна: от округлых до цилиндрических и даже палочковидных телец. Численность их – от нескольких десятков до нескольких тысяч в каждой клетке.Размеры не более 1 мкм. Снаружи митохондрии окружены двухмембранной оболочкой. Внутренняя мембрана представлена в виде пластинчатых выростов – крист. Размножаются путем деления.

Основная функция митохондрий – участие в дыхании клетки с помощью ферментов. В митохондриях в результате реакции окислительного фосфорилирования синтезируются богатые энергией молекулы аденозинтрифосфорной кислоты (АТФ). Механизм окислительного фосфорилирования был открыт английским биохимиком П.Митчелом в 1960 г.

Пластиды. Эти органеллы, характерные только для растений, встречаются во всех живых растительных клетках. Пластиды – относительно крупные (4-10 мкм) живые растительные тельца разной формы и окраски. Различают три типа пластид: 1) хлоропласты, окрашенные в зеленый цвет; 2) хромопласты, окрашенные в желто-красные цвета; 3) лейкопласты, не имеющие окраски.

Хлоропласты встречаются во всех зеленых органах растений. У высших растений пластид в клетках несколько десятков, у низших (водорослей) – 1-5. Они крупные, разнообразны по форме. В хлоропластах содержится до 75 % воды, белки, липиды, нуклеиновые кислоты, ферменты и красящие вещества – пигменты. Для образования хлорофилла необходимы определенные условия – свет, соли железа и магния в почве. От цитоплазмы хлоропласт отделен двойной мембранной оболочкой; тело его состоит из бесцветной мелкозернистой стромы.Строма пронизана параллельно расположенными пластинками – ламеллами, дисками. Диски собраны в стопки – граны. Основная функция хлоропластов – фотосинтез.

Хромопласты встречаются в корнеплодах моркови, плодах многих растений (облепиха, шиповник, рябина и др.), в зеленых листьях шпината, крапивы, в цветках (розы, гладиолусы, календула), окраска которых зависит от присутствия в них пигментов каротиноидов: каротина – оранжево-красного цвета и ксантофилла – желтого цвета.

Лейкопласты – бесцветные пластиды, пигменты отсутствуют. Они представляют собой белковые вещества в виде шаровидных, веретонообразных зернышек, концентрирующихся вокруг ядра. В них осуществляется синтез и накопление запасных питательных веществ, в основном крахмала, белков и жиров. Лейкопласты находятся в цитоплазме, эпидерме, молодых волосках, подземных органах растений и в тканях зародыша семени.

Пластиды могут переходить из одного вида в другой.

4. Ядро. Ядро – одно из главных органелл эукариотической клетки. В растительной клетке одно ядро. В ядре хранится и воспроизводится наследственная информация. Размеры ядра у разных растений разные, от 2-3 до 500 мкм. Форма чаще округлая или чечевицеобразная. В молодых клетках ядро крупнее, чем в старых, и занимает центральное положение. Ядро окружено двойной мембраной с порами, регулирующими обмен веществ. Наружная мембрана объединена с эндоплазматической сетью. Внутри ядра заключен ядерный сок – кариоплазма с хроматином, ядрышками и рибосомами. Хроматин – бесструктурная среда из особых нуклеопротеидных нитей, богатых ферментами. В хроматине сосредоточена основная масса ДНК. В процессе клеточного деления хроматин превращается в хромосомы – носители генов. Хромосомы образованы двумя одинаковыми нитями ДНК – хроматидами. Каждая хромосома в середине имеет перетяжку – центромеру. Число хромосом у разных растений неодинакова: от двух до нескольких сотен. Каждый вид растений имеет постоянный набор хромосом. В хромосомах синтезируются нуклеиновые кислоты, необходимые для образования белков. Совокупность количественных и качественных признаков хромосомного набора клетки называют кариотипом. Изменение числа хромосом происходит в результате мутаций. Наследственное кратное увеличение числа хромосом у растений получило название полиплоидии.

Ядрышки – сферические, довольно плотные тельца диаметром 1-3 мкм. В ядре содержатся 1-2, иногда несколько ядрышек. Ядрышко является основным носителем РНК ядра. Основная функция ядрышка – синтез рРНК.

Деление ядра и клетки. Размножение клеток происходит путем их деления. Период между двумя последовательными делениями составляет клеточный цикл. При делении клеток наблюдается рост растения и увеличение его общей массы. Существуют три способа деления клеток: митоз, или кариокинез (непрямое деление), мейоз (редукционное деление) и амитоз (прямое деление).

Митоз характерен для всех клеток органов растений, кроме половых. В результате митоза растет и увеличивается общая масса растения. Биологическое значение митоза заключается в строго одинаковом распределении редуплицированных хромосом между дочерними клетками, что обеспечивает образование генетически равноценных клеток. Митоз впервые был описан русским ботаником И.Д.Чистяковым в 1874 г. В процессе митоза выделяют несколько фаз: профазу, метафазу, анафазу и телофазу. Промежуток между двумя делениями клетки называется интерфазой. В интерфазе осуществляется общий рост клетки, редупликация органоидов, синтез ДНК, формирование и подготовка структур к началу митотического деления.

Профаза – самая длительная фаза митоза. В профазе хромосомы становятся видны в световой микроскоп. В профазе ядро претерпевает два изменения: 1. стадия плотного клубка; 2. стадия рыхлого клубка. В стадии плотного клубка хромосомы становятся видны в световой микроскоп, раскручиваются из клубка или из спирали и вытягиваются. Каждая хромосома состоит из двух хроматид, расположенных параллельно друг другу. Постепенно они укорачиваются, утолщаются и обособляются, исчезают ядерная оболочка и ядрышко. Ядро увеличивается в объеме. На противоположных полюсах клетки образуется ахроматиновое веретено – веретено деления, состоящее из неокрашивающихся нитей, протягивающихся от полюсов клетки (стадия рыхлого клубка).

В метафазе заканчивается формирование веретена деления, хромосомы приобретают определенную форму того или иного вида растения и собираются в одной плоскости – экваториальной, на месте бывшего ядра. Ахроматиновое веретено постепенно сокращается, и хроматиды начинают отделяться друг от друга, оставаясь связанными в области центромеры.

В анафазе происходит деление центромеры. Образовавшиеся сестринские центромеры и хроматиды направляются к противоположным полюсам клетки. Самостоятельные хроматиды становятся дочерними хромосомами, и, следовательно, их будет точно столько, сколько в материнской клетке.

Телофаза – последняя фаза деления клетки, когда дочерние хромосомы достигают полюсов клетки, постепенно исчезает веретено деления, хромосомы удлиняются и становятся плохо заметными в световой микроскоп, в экваториальной плоскости формируется срединная пластинка. Постепенно образуется клеточная стенка и одновременно – ядрышки и ядерная оболочка вокруг двух новых ядер (1. стадия рыхлого клубка; 2. стадия плотного клубка). Образовавшиеся клетки вступают в очередную интерфазу.

Длительность митоза примерно 1-2 часа. Процесс от момента образования срединной пластинки до формирования новой клетки называют цитокинезом. Дочерние клетки в два раза мельче материнских, но затем они растут и достигают размеров материнской клетки.

Мейоз. Впервые был открыт русским ботаником В.И.Беляевым в 1885 г. Этот тип деления клеток связан с образованием спор и гамет, или половых клеток, имеющих гаплоидное число хромосом (n). Сущность его заключается в уменьшении (редукции) числа хромосом в 2 раза в каждой образовавшейся после деления клетке. Мейоз состоит из двух следующих друг за другом делений. Мейоз в отличие от митоза состоит из двух видов деления: редукционного (увеличение); экватоционного (митотическое деление). Редукционное деление происходит при первом делении, которое состоит из нескольких фаз: профаза I, метафаза I, анафаза I, телофаза I. В экватоционном делении различают: профаза II, метафаза II, анафаза II, телофаза II. В редукционном делении существует интерфаза.

Профаза I. Хромосомы имеют форму длинных двойных нитей. Хромосома состоит из двух хроматид. Это стадия лептонемы. Затем гомологичные хромосомы притягиваются друг к другу, образуя пары – биваленты. Эта стадия называется зигонемой. Спаренные гомологичные хромосомы состоят из четырех хроматид, или тетрад. Хроматиды могут быть расположены параллельно друг другу либо перекрещиваться между собой, обмениваясь участками хромосом. Эта стадия получила название кроссинговера. В следующей стадии профазы I – пахинеме, хромосомные нити утолщаются. В следующей стадии – диплонеме – тетрады хроматид укорачиваются. Конъюгирующие хромосомы сближаются друг с другом так, что становятся неразличимыми. Исчезают ядрышко и ядерная оболочка, формируется ахроматиновове веретено. В последней стадии – диакинезе – биваленты направляются к экваториальной плоскости.

Метафаза I. Биваленты располагаются по экватору клетки. Каждая хромосома прикреплена ахроматиновым веретеном к центромере.

Анафаза I. Происходит сокращение нитей ахроматинового веретена, и гомологичные хромосомы в каждом биваленте расходятся к противоположным полюсам, причем на каждом полюсе окажется половинное число хромосом материнской клетки, т.е. происходит уменьшение (редукция) числа хромосом и образуются два гаплоидных ядра.

Телофаза I. Эта фаза слабо выражена. Хромосомы деконденсируются; ядро принимает вид интерфазного, но в нем не происходит удвоения хромосом. Эта стадия называется интеркинезом. Она непродолжительная, у некоторых видов отсутствует, и тогда клетки сразу после телофазы I переходят в профазу II.

Второе мейотическое деление происходит по типу митоза.

Профаза II. Наступает быстро, вслед за телофазой I. Видимых изменений в ядре не происходит и сущность этой стадии заключается в том, что происходит рассасывание ядерных оболочек и появление четырех полюсов деления. Возле каждого ядра возникает два полюса.

Метафаза II. Удвоенные хромосомы выстраиваются у своих экваторов и стадия носит название стадии материнской звезды или экваториальной пластинки. От каждого полюса деления отходят нити веретена деления, которые прикрепляются к хроматидам.

Анафаза II. Полюса делений натягивают нити веретена деления, которые начинают рассасываться и натягивать удвоенные хромосомы. Наступает момент разрыва хромосом и расхождения их к четырем полюсам.

Телофаза II. Вокруг каждого полюса у хромосом происходит стадия рыхлого клубка и стадия плотного клубка. После чего рассасываются центриоли и вокруг хромосом восстанавливаются ядерные оболочки и ядрышки. После чего делится и цитоплазма.

Итогом мейоза является образование четырех дочерних клеток из одной материнской с гаплоидным набором хромосом.

Для каждого вида растений характерно постоянное число хромосом и постоянная их форма. Среди высших растений часто встречается явление полиплоидии, т.е. многократное повторение в ядре одного набора хромосом (триплоиды, тетераплоиды и т.д.).

В старых и больных клетках растений можно наблюдать прямое (амитоз) деление ядра путем простой его перетяжки на две части с произвольным количеством ядерного вещества. Впервые это деление было описано Н.Железновым в 1840 г.

5. Производные протопласта. К производным протопласта относятся: 1) вакуоли; 2) включения; 3) клеточная стенка; 4) физиологически активные вещества: ферменты, витамины, фитогормоны и др.; 5) продукты обмена веществ.

Вакуоли – полости в протопласте – производные эндоплазматической сети. Они ограничены мембраной – тонопластом и заполнены клеточным соком. Клеточный сок накапливается в каналах эндоплазматической сети в виде капелек, которые затем сливаются, образуя вакуоли. В молодых клетках содержится много мелких вакуолей, в старой клетке обычно присутствует одна крупная вакуоль. В клеточном соке растворены сахара (глюкоза, фруктоза, сахароза, инулин), растворимые белки, органические кислоты (щавелевая, яблочная, лимонная, винная, муравьиная, уксусная и др.), разнообразные гликозиды, дубильные вещества, алкалоиды (атропин, папаверин, морфин и др.), ферменты, витамины, фитонциды и др. В клеточном соке многих растений имеются пигменты – антоциан (красный, синий, фиолетовый цвет разных оттенков), антохлоры (желтый цвет), антофеины (темно-бурый цвет). В вакуолях семян содержатся белки-протеины. В клеточном соке растворены также многие неорганические соединения.

Вакуоли – места отложений конечных продуктов обмена веществ.

Вакуоли формируют внутреннюю водную среду клетки, с их помощью осуществляется регуляция водно-солевого обмена. Вакуоли поддерживают тургорное гидростатическое давление внутри клеток, что способствует поддержанию формы неодревесневших частей растений – листьев, цветков. Тургорное давление связано с избирательной проницаемостью тонопласта для воды и явлением осмоса – односторонней диффузией воды через полупроницаемую перегородку в сторону водного раствора солей большей концентрации. Поступающая в клеточный сок вода оказывает давление на цитоплазму, а через нее – на стенку клетки, вызывая упругое ее состояние, т.е. обеспечивая тургор. Нехватка воды в клетке ведет к плазмолизу, т.е. к сокращению объема вакуолей и отделению протопластов от оболочки. Плазмолиз может быть обратимым.

Включения – вещества, образующиеся в результате жизнедеятельности клетки либо про запас, либо как отбросы. Включения локализуются либо в гиалоплазме и органоидах, либо в вакуоле в твердом или жидком состоянии. Включения представляют собой запасные питательные вещества, например, зерна крахмала в клубнях картофеля, луковицах, корневищах и в других органах растений, откладывающиеся в особом типе лейкопластов – амилопластах.

Клеточная стенка – это твердое структурное образование, придающее каждой клетке форму и прочность. Она выполняет защитную роль, предохраняя клетку от деформации, противостоит высокому осмотическому давлению большой центральной вакуоли и препятствует разрыву клетки. Клеточная стенка - продукт жизнедеятельности протопласта. Первичная клеточная стенка образуется сразу после деления клеток и состоит в основном из пектиновых веществ и целлюлозы. Разрастаясь, она округляется, образуя межклетники, заполненные водой, воздухом или пектиновыми веществами. При отмирании протопласта мертвая клетка способна проводить воду и выполнять свою механическую роль. Клеточная стенка может разрастаться только в толщину. На внутренней поверхности первичной клеточной стенки начинает откладываться вторичная клеточная стенка. Утолщение бывает внутренним и наружным. Наружные утолщения возможны только на свободной поверхности, например, в виде шипов, бугорков и других образований (споры, пыльцевые зерна). Внутреннее утолщение представлено скульптурными утолщениями в виде колец, спиралей, сосудов и т.д. Неутолщенными остаются только поры – места во втроричной стенке клетки. Через поры по плазмодесмам – тяжам цитоплазмы – осуществляется обмен веществ между клетками, передается раздражение из одной клетки в другую и т.д. Поры бывают простые и окаймленные. Простые поры встречаются в паренхимных и прозенхимных клетках, окаймленные – сосудах и трахеидах, проводящих воду и минеральные вещества.

Вторичная клеточная стенка построена главным образом из целлюлозы, или клетчатки (С 6 Н 10 О 5)n – очень стойкого вещества, нерастворимого в воде, кислотах и щелочах.

С возрастом клеточные стенки претерпевают видоизменения, пропитываются различными веществами. Типы видоизменений: опробковение, одревеснение, кутинизация, минерализация и ослизнение. Так, при опробковении клеточные стенки пропитываются особым веществом суберином, при одревеснении – лигнином, при кутинизации – жироподобным веществом кутином, при минерализации – минеральными солями, чаще всего углекислым кальцием и кремнеземом, при ослизнении клеточные стенки поглощают большое количество воды и сильно разбухают.

Ферменты, витамины, фитогормоны. Ферменты – это органические катализаторы белковой природы, присутствуют во всех органоидах и компонентах клетки.

Витамины – органические вещества разного химического состава, присутствуют в качестве компонентов в ферментах и выполняют роль катализаторов. Витамины обозначаются заглавными буквами латинского алфавита: А, В, С, D и др. Различают водорастворимые витамины (В, С, РР, Н и др.) и жирорастворимые (А, D, Е).

Водорастворимые витамины находятся в клеточном соке, а жирорастворимые – в цитоплазме. Известно более 40 витаминов.

Фитогормоны – физиологически активные вещества. Наиболее изучены гормоны роста – ауксин и гиббереллин.

Жгутики и реснички. Жгутики – двигательные приспособления у прокариот и у большинства низших растений.

Реснички имеют многие водоросли, мужские половые клетки высших растений, за исключением покрытосеменных и части голосеменных.

Тип урока : комбинированный.

Методы : словесный, наглядный, практический, проблемно-поисковый.

Цели урока

Образовательная: углубить знания учащихся о строении клеток эукариот, научить применять их на практических занятиях.

Развивающие: совершенствовать умения учащихся работать с дидактическим материалом; развивать мышление учащихся, предлагая задания для сравнения клеток прокариот и эукариот, клеток растений и клетки животных с выявлением схожих и отличительных признаков.

Оборудование : плакат «Строение цитоплазматической мембраны»; карточки-задания; раздаточный материал (строение прокариотической клетки, типичная растительная клетка, строение животной клетки).

Межпредметные связи : ботаника, зоология, анатомия и физиология человека.

План урока

I. Организационный момент

Проверка готовности к уроку.
Проверка списочного состава учащихся.
Сообщение темы и целей урока.

II. Изучение нового материала

Разделение организмов на про- и эукариоты

По форме клетки необычайно разнообразны: одни имеют округлую форму, другие похожи на звездочки со многими лучами, третьи вытянутые и т.д. Различны клетки и по размеру – от мельчайших, с трудом различимых в световом микроскопе, до прекрасно видимых невооруженным глазом (например, икринки рыб и лягушек).

Любое неоплодотворенное яйцо, в том числе гигантские окаменевшие яйца ископаемых динозавров, которые хранятся в палеонтологических музеях, тоже были когда-то живыми клетками. Однако, если говорить о главных элементах внутреннего строения, все клетки схожи между собой.

Прокариоты (от лат. pro – перед, раньше, вместо и греч. karyon – ядро) – это организмы, клетки которых не имеют ограниченного мембраной ядра, т.е. все бактерии, включая архебактерии и цианобактерии. Общее число видов прокариот около 6000. Вся генетическая информация прокариотической клетки (генофор) содержится в одной-единственной кольцевой молекуле ДНК. Митохондрии и хлоропласты отсутствуют, а функции дыхания или фотосинтеза, обеспечивающие клетку энергией, выполняет плазматическая мембрана (рис. 1). Размножаются прокариоты без выраженного полового процесса путем деления надвое. Прокариоты способны осуществлять целый ряд специфических физиологических процессов: фиксируют молекулярный азот, осуществляют молочнокислое брожение, разлагают древесину, окисляют серу и железо.

После вступительной беседы учащиеся рассматривают строение прокариотической клетки, сравнивая основные особенности строения с типами эукариотической клетки (рис. 1).

Эукариоты – это высшие организмы, имеющие четко оформленное ядро, которое оболочкой отделяется от цитоплазмы (кариомембраной). К эукариотам относятся все высшие животные и растения, а также одноклеточные и многоклеточные водоросли, грибы и простейшие. Ядерная ДНК у эукариот заключена в хромосомах. Эукариоты обладают клеточными органоидами, ограниченными мембранами.

Отличия эукариот от прокариот

– Эукариоты имеют настоящее ядро: генетический аппарат эукариотической клетки защищен оболочкой, схожей с оболочкой самой клетки.
– Включенные в цитоплазму органоиды окружены мембраной.

Строение клеток растений и животных

Клетка любого организма представляет собой сис-тему. Она состоит из трех взаимосвязанных между собой частей: оболочки, ядра и цитоплазмы.

При изучении ботаники, зоологии и анатомии человека вы уже знакомились со строением различных типов клеток. Кратко повторим этот материал.

Задание 1. Определите по рисунку 2, каким организмам и типам тканей соответствуют клетки под цифрами 1–12. Чем обусловлена их форма?

Строение и функции органоидов растительных и животных клеток

Используя рисунки 3 и 4 и пользуясь Биологическим энциклопедическим словарем и учебником, учащиеся заполняют таблицу, сравнивая животную и растительную клетки.

Таблица. Строение и функции органоидов растительных и животных клеток

Органоиды клетки

Строение органоидов

Функция

Присутствие органоидов в клетках

растений

животных

Хлоропласт

Представляет собой разновидность пластид

Окрашивает растения в зеленый цвет, в нем происходит фотосинтез

Лейкопласт

Оболочка состоит из двух элементарных мембран; внутренняя, врастая в строму, образует немногочисленные тилакоиды

Синтезирует и накапливает крахмал, масла, белки

Хромопласт

Пластиды с желтой, оранжевой и красной окраской, окраска обусловлена пигментами – каротиноидами

Красная, желтая окраска осенних листьев, сочных плодов и др.

Занимает до 90% объема зрелой клетки, заполнена клеточным соком

Поддержание тургора, накопление запасных веществ и продуктов обмена, регуляция осмотического давления и др.

Микротрубочки

Состоят из белка тубулина, расположены около плазматической мембраны

Участвуют в отложении целлюлозы на клеточных стенках, перемещении в цитоплазме различных органоидов. При делении клетки микротрубочки составляют основу структуры веретена деления

Плазматическая мембрана (ЦПМ)

Состоит из липидного бислоя, пронизанного белками, погруженными на различную глубину

Барьер, транспорт веществ, сообщение клеток между собой

Гладкий ЭПР

Система плоских и ветвящихся трубочек

Осуществляет синтез и выделение липидов

Шероховатый ЭПР

Название получил из-за множества рибосом, находящихся на его поверхности

Синтез белков, их накопление и преобразование для выделения из клетки наружу

Окружено двойной ядерной мембраной, имеющей поры. Наружная ядерная мембрана образует непрерывную структуру с мембраной ЭПР. Содержит одно или несколько ядрышек

Носитель наследственной информации, центр регуляции активности клетки

Клеточная стенка

Состоит из длинных молекул целлюлозы, собранных в пучки, называемые микрофибриллами

Внешний каркас, защитная оболочка

Плазмодесмы

Мельчайшие цитоплазматические каналы, которые пронизывают клеточные стенки

Объединяют протопласты соседних клеток

Митохондрии

Синтез АТФ (аккумуляция энергии)

Аппарат Гольджи

Состоит из стопки плоских мешочков – цистерн, или диктиосом

Синтез полисахаридов, формирование ЦПМ и лизосом

Лизосомы

Внутриклеточное пищеварение

Рибосомы

Состоят из двух неравных субъединиц –
большой и малой, на которые могут диссоциировать

Место биосинтеза белка

Цитоплазма

Состоит из воды с большим количеством растворенных в ней веществ, содержащих глюкозу, белки и ионы

В ней расположены другие органоиды клетки и осуществляются все процессы клеточного метаболизма

Микрофиламенты

Волокна из белка актина, обычно располагаются пучками вблизи поверхности клеток

Участвуют в подвижности и изменении формы клеток

Центриоли

Могут входить в состав митотического аппарата клетки. В диплоидной клетке содержится две пары центриолей

Участвуют в процессе деления клетки у животных; в зооспорах водорослей, мхов и у простейших образуют базальные тельца ресничек

Микроворсинки

Выступы плазматической мембраны

Увеличивают наружную поверхность клетки, микроворсинки в совокупности образуют кайму клетки

Выводы

1. Клеточная стенка, пластиды и центральная вакуоль присущи только растительным клеткам.
2. Лизосомы, центриоли, микроворсинки присутствуют в основном только в клетках животных организмов.
3. Все остальные органоиды характерны как для растительных, так и для животных клеток.

Строение оболочки клеток

Клеточная оболочка располагается снаружи клетки, отграничивая последнюю от внешней или внутренней среды организма. Ее основу составляет плазмалемма (клеточная мембрана) и углеводно-белковая составляющая.

Функции клеточной оболочки:

– поддерживает форму клетки и придает механическую прочность клетке и организму в целом;
– защищает клетку от механических повреждений и попадания в нее вредных соединений;
– осуществляет узнавание молекулярных сигналов;
– регулирует обмен веществ между клеткой и средой;
– осуществляет межклеточное взаимодействие в многоклеточном организме.

Функция клеточной стенки:

– представляет собой внешний каркас – защитную оболочку;
– обеспечивает транспорт веществ (через клеточную стенку проходит вода, соли, молекулы многих органических веществ).

Наружный слой клеток животных, в отличие от клеточных стенок растений, очень тонкий, эластичный. Он не виден в световой микроскоп и состоит из разнообразных полисахаридов и белков. Поверхностный слой животных клеток называется гликокаликсом , выполняет функцию непосредственной связи клеток животных с внешней средой, со всеми окружающими ее веществами, опорной роли не выполняет.

Под гликокаликсом животной и клеточной стенкой растительной клетки расположена плазматическая мембрана, граничащая непосредственно с цитоплазмой. В состав плазматической мембраны входят белки и липиды. Они расположены упорядоченно за счет различных химических взаимодействий друг с другом. Молекулы липидов в плазматической мембране расположены в два ряда и образуют сплошной липидный бислой. Молекулы белков не образуют сплошного слоя, они располагаются в слое липидов, погружаясь в него на разную глубину. Молекулы белков и липидов подвижны.

Функции плазматической мембраны:

– образует барьер, отграничивающий внутреннее содержимое клетки от внешней среды;
– обеспечивает транспорт веществ;
– обеспечивает связь между клетками в тканях многоклеточных организмов.

Поступление веществ в клетку

Поверхность клетки не сплошная. В цитоплазматической мембране есть многочисленные мельчайшие отверстия – поры, через которые с помощью или без помощи специальных белков, внутрь клетки могут проникать ионы и мелкие молекулы. Кроме того, некоторые ионы и мелкие молекулы могут попадать в клетку непосредственно через мембрану. Поступление важнейших ионов и молекул в клетку не пассивная диффузия, а активный транспорт, требующий затрат энергии. Транспорт веществ носит избирательный характер. Избирательная проницаемость клеточной мембраны носит название полупроницаемости .

Путем фагоцитоза внутрь клетки поступают: крупные молекулы органических веществ, например белков, полисахаридов, частицы пищи, бактерии. Фагоцитоз осуществляется с участием плазматической мембраны. В том месте, где поверхность клетки соприкасается с частицей какого-либо плотного вещества, мембрана прогибается, образует углубление и окружает частицу, которая в «мембранной капсуле» погружается внутрь клетки. Образуется пищеварительная вакуоль, и в ней перевариваются поступившие в клетку органические вещества.

Путем фагоцитоза питаются амебы, инфузории, лейкоциты животных и человека. Лейкоциты поглощают бактерии, а также разнообразные твердые частицы, случайно попавшие в организм, защищая его таким образом от болезнетворных бактерий. Клеточная стенка растений, бактерий и синезеленых водорослей препятствует фагоцитозу, и потому этот путь поступления веществ в клетку у них не реализуется.

Через плазматическую мембрану в клетку проникают и капли жидкости, содержащие в растворенном и взвешенном состоянии разнообразные вещества.Это явление было названо пиноцитозом . Процесс поглощения жидкости сходен с фагоцитозом. Капля жидкости погружается в цитоплазму в «мембранной упаковке». Органические вещества, попавшие в клетку вместе с водой, начинают перевариваться под влиянием ферментов, содержащихся в цитоплазме. Пиноцитоз широко распространен в природе и осуществляется клетками всех животных.

III. Закрепление изученного материала

На какие две большие группы разделяются все организмы по строению ядра?
Какие органоиды свойственны только растительным клеткам?
Какие органоиды свойственны только животным клеткам?
Чем различается строение оболочки клеток растений и животных?
Каковы два способа поступления веществ в клетку?
Каково значение фагоцитоза для животных?

По строению различные эукариотические клетки сходны. Но наряду со сходством между клетками организмов различных царств живой природы имеются заметные отличия. Они касаются как структурных, так и биохимических особенностей.

На рисунках представлено схематичное и объемное изображение животной и растительной клеток с расположением в них органелл и включений.

Рисунок 10 - Схемы строения животной клетки.

Цитоплазма клетки содержит ряд мельчайших структур, выполняющих разнообразные функции. Эти клеточные структуры, ограниченные мембранами, получили название органелл. Ядро, митохондрии, лизосомы, хлоропласты –это клеточные органеллы. Органеллы могут быть отделены от цитозоля однослойной или двухслойной мембраной.

Главная функция мембраны состоит в том, что через нее движутся различные вещества из клетки в клетку. Таким образом осуществляется обмен веществ между клетками и межклеточным веществом. Также растительная клетка имеет жесткую клеточную стенку над мембраной. Клеточные стенки соседних клеток разделены серединной пластинкой, а для осуществления обмена веществ в клеточных стенках имеется система отверстий – плазмодесм.

На рисунке 11 представлены схемы строения растительной клетки.

Рисунок 11 – Схемы строения растительной клетки

Для растительной клетки характерно наличие различных пластид, крупной центральной вакуоли, которая иногда отодвигает ядро к периферии, а также расположенной снаружи плазматической мембраны клеточной стенки, состоящей из целлюлозы. В клетках высших растений в клеточном центре отсутствует центриоль, встречающаяся только у водорослей. Резервным питательным углеводом в клетках растений является крахмал.

Итак, основные органеллы животной и растительной клетки:

ядро и ядрышко; рибосомы; эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, вакуоли, митохондрии, пластиды, клеточный центр (центриоли)

Цитоплазма представляет собой внутреннюю полужидкую среду клеток, ограниченную плазматической мембраной, в которой располагаются ядро и другие органоиды . Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур и обеспечении их химического взаимодействия.

Здесь же сосредоточены и разнообразные

§ включения (временные образования) - содержащие нерастворимые отходы обменных процессов и запасные питательные вещества;

§ вакуоли;

§ тончайшие трубочки и нити, образующие скелет клетки.

В состав цитоплазмы входят все виды органических и неорганических веществ. Основное вещество цитоплазмы содержит значительное количество белков и воды. В ней протекают основные процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов и деятельность клетки как единой целостной живой системы. Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды. Это движение называется циклозом.